Maximum Subarray Sum

medium

By - Aman Pareek

Last Updated - 29/08/2024

Problem Statement

Given an array of integers, your task is to find the contiguous subarray (containing at least one number) that has the largest sum and return that sum.

Example 1

Input: array = [1, -2, 3, 4, -1, 2, 1, -5, 4]

Output: 9

Solution 1: Kadane Algorithm

function maximumSubarraySumKadane(arr) {
    let maxSoFar = arr[0];
    let maxEndingHere = arr[0];
    
    for (let i = 1; i < arr.length; i++) {
        maxEndingHere = Math.max(arr[i], maxEndingHere + arr[i]);
        maxSoFar = Math.max(maxSoFar, maxEndingHere);
    }
    
    return maxSoFar;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumKadane(array1);  //output: 9 

Solution 2: Prefix Sum with HashMap

function maximumSubarraySumPrefixSum(arr) {
    let maxSum = -Infinity;
    let prefixSum = 0;
    let minPrefixSum = 0;  // Initialize with 0, to handle cases where the subarray starts from the beginning

    for (let i = 0; i < arr.length; i++) {
        prefixSum += arr[i];
        maxSum = Math.max(maxSum, prefixSum - minPrefixSum);
        minPrefixSum = Math.min(minPrefixSum, prefixSum);
    }

    return maxSum;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumPrefixSum(array1);  //output: 9 

Solution 3: Dynamic Programming Approach

function maximumSubarraySumDynamic(arr) {
    if (arr.length === 0) return 0;
    
    const dp = new Array(arr.length).fill(0);
    dp[0] = arr[0];
    let maxSum = dp[0];
    
    for (let i = 1; i < arr.length; i++) {
        dp[i] = Math.max(arr[i], dp[i - 1] + arr[i]);
        maxSum = Math.max(maxSum, dp[i]);
    }
    
    return maxSum;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumDynamic(array1);  //output: 9 

Solution 4: Divide and Conquer

function maximumSubarraySumDivideAndConquer(arr) {
    function maxCrossingSum(arr, left, mid, right) {
        let sum = 0;
        let leftSum = -Infinity;
        
        for (let i = mid; i >= left; i--) {
            sum += arr[i];
            leftSum = Math.max(leftSum, sum);
        }
        
        sum = 0;
        let rightSum = -Infinity;
        
        for (let i = mid + 1; i <= right; i++) {
            sum += arr[i];
            rightSum = Math.max(rightSum, sum);
        }
        
        return leftSum + rightSum;
    }
    
    function maxSubArraySum(arr, left, right) {
        if (left === right) return arr[left];
        
        const mid = Math.floor((left + right) / 2);
        
        return Math.max(
            maxSubArraySum(arr, left, mid),
            maxSubArraySum(arr, mid + 1, right),
            maxCrossingSum(arr, left, mid, right)
        );
    }
    
    return maxSubArraySum(arr, 0, arr.length - 1);
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumDivideAndConquer(array1);  //output: 9 

Solution 5: Brute Force Approach

function maximumSubarraySumBruteForce(arr) {
    let maxSum = -Infinity;
    
    for (let i = 0; i < arr.length; i++) {
        let currentSum = 0;
        for (let j = i; j < arr.length; j++) {
            currentSum += arr[j];
            maxSum = Math.max(maxSum, currentSum);
        }
    }
    
    return maxSum;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumBruteForce(array1);  //output: 9 

Solution 6: Sliding Window Approach

function maximumSubarraySumSlidingWindow(arr) {
    let maxSum = -Infinity;
    let currentSum = 0;
    
    for (let i = 0; i < arr.length; i++) {
        currentSum = Math.max(arr[i], currentSum + arr[i]);
        maxSum = Math.max(maxSum, currentSum);
    }
    
    return maxSum;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumSlidingWindow(array1);  //output: 9 

Solution 7: Recursive Approach

function maximumSubarraySumRecursive(arr) {
    function helper(arr, start, end) {
        if (start === end) return arr[start];
        
        const mid = Math.floor((start + end) / 2);
        
        const leftMax = helper(arr, start, mid);
        const rightMax = helper(arr, mid + 1, end);
        
        let leftSum = -Infinity, rightSum = -Infinity;
        let sum = 0;
        
        for (let i = mid; i >= start; i--) {
            sum += arr[i];
            leftSum = Math.max(leftSum, sum);
        }
        
        sum = 0;
        
        for (let i = mid + 1; i <= end; i++) {
            sum += arr[i];
            rightSum = Math.max(rightSum, sum);
        }
        
        const crossMax = leftSum + rightSum;
        
        return Math.max(leftMax, rightMax, crossMax);
    }
    
    return helper(arr, 0, arr.length - 1);
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumRecursive(array1);  //output: 9 

Solution 8: Maximum Subarray Sum with Indices

function maximumSubarraySumWithIndices(arr) {
    let maxSoFar = -Infinity;
    let maxEndingHere = -Infinity;
    let start = 0, end = 0, s = 0;
    
    for (let i = 0; i < arr.length; i++) {
        if (maxEndingHere < 0) {
            maxEndingHere = arr[i];
            s = i;
        } else {
            maxEndingHere += arr[i];
        }
        
        if (maxEndingHere > maxSoFar) {
            maxSoFar = maxEndingHere;
            start = s;
            end = i;
        }
    }
    
    return maxSoFar;
} 

const array1 = [1, -2, 3, 4, -1, 2, 1, -5, 4];
maximumSubarraySumWithIndices(array1);  //output: 9 

Popular Solutions