Search Insert Position

easy

By - Aman Pareek

Last Updated - 09/09/2024

Problem Statement

You are given a sorted array of distinct integers and a target value. Your task is to find the index of the target value if it exists in the array. If the target is not found, you need to determine the index where it should be inserted to maintain the sorted order.

To solve this problem, you must write an efficient algorithm.

Example 1

Input: nums = [1,3,5,6] , target = 5

Output: 2

Example 2

Input: nums = [1,3,5,6] , target = 2

Output: 1

Example 3

Input: nums = [1,3,5,6] , target = 7

Output: 4

Constraints

  • The length of the array, nums, is between 1 and 10,000.

  • Each integer in nums is between -10,000 and 10,000.

  • The array nums contains distinct values sorted in ascending order.

  • The target value is between -10,000 and 10,000.

Solution 1: Binary Search for Insert Position

function searchInsertBinarySearch(arr, target) {
    let st = 0;
    let end = arr.length - 1;
    let ans = arr.length; // Initialize ans to the end of the array

    while (st <= end) {
        const mid = Math.floor(st + (end - st) / 2);
        if (target === arr[mid]) {
            return mid;
        }
        if (target < arr[mid]) {
            end = mid - 1;
            ans = mid; // Update ans to the current mid
        } else {
            st = mid + 1;
        }
    }
    return ans;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertBinarySearch(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertBinarySearch(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertBinarySearch(nums3,target3);  //output: 4 

Solution 2: Linear Search for Insert Position

function searchInsert(nums, target) {
    let count = 0;
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] === target) {
            return i;
        }
        if (target > nums[i]) {
            count++;
        }
    }
    return count;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsert(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsert(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsert(nums3,target3);  //output: 4 

Solution 3: Binary Search with Lower Bound for Insert Position

function searchInsertLowerBound(nums, target) {
    let left = 0;
    let right = nums.length;

    while (left < right) {
        const mid = Math.floor(left + (right - left) / 2);
        if (nums[mid] < target) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }

    return left;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertLowerBound(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertLowerBound(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertLowerBound(nums3,target3);  //output: 4 

Solution 4: Linear Search for Insert Position in Sorted Array

function searchInsertLS(nums, target) {
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] >= target) {
            return i;
        }
    }
    return nums.length;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertLS(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertLS(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertLS(nums3,target3);  //output: 4 

Solution 5: Recursive Binary Search for Insert Position

function searchInsertRecursive(nums, target) {
    function binarySearch(nums, target, start, end) {
        if (start > end) {
            return start;
        }
        
        const mid = Math.floor(start + (end - start) / 2);
        
        if (nums[mid] === target) {
            return mid;
        }
        if (nums[mid] < target) {
            return binarySearch(nums, target, mid + 1, end);
        }
        return binarySearch(nums, target, start, mid - 1);
    }

    return binarySearch(nums, target, 0, nums.length - 1);
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertRecursive(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertRecursive(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertRecursive(nums3,target3);  //output: 4 

Solution 6: Linear Scan

function searchInsertPositionMethod(nums, target) {
  const arrLength = nums.length;
  if (arrLength === 0) throw new Error("Empty Array");

  for (let i = 0; i < arrLength; i++) {
    if (nums[i] === target) return i; // Target found, return the index
    if (nums[i] > target) return i; // Target should be inserted before this index
  }

  // If target is greater than all elements, return the length of the array
  return arrLength;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertPositionMethod(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertPositionMethod(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertPositionMethod(nums3,target3);  //output: 4 

Solution 7: Search Insert Position using exponentaion search algorithm

function searchInsertExponentialSearch(arr, target) {
    const n = arr.length;

    // If the array is empty
    if (n === 0) {
        return 0;
    }

    // If the target is less than the first element
    if (target <= arr[0]) {
        return 0;
    }

    // Find the range where the target could be
    let index = 1;
    while (index < n && arr[index] < target) {
        index *= 2;
    }

    // Perform binary search within the range
    let left = Math.floor(index / 2);
    let right = Math.min(index, n - 1);

    while (left <= right) {
        const mid = Math.floor(left + (right - left) / 2);
        if (arr[mid] === target) {
            return mid;
        }
        if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }

    // If target is not found, `left` will be the insertion point
    return left;
} 

const nums1 = [1,3,5,6];
const target1 = 5;
searchInsertExponentialSearch(nums1,target1);  //output: 2 

const nums2 = [1,3,5,6];
const target2 = 2;
searchInsertExponentialSearch(nums2,target2);  //output: 1 

const nums3 = [1,3,5,6];
const target3 = 7;
searchInsertExponentialSearch(nums3,target3);  //output: 4 

Popular Solutions