Longest Valid Parentheses

hard

By - Aman Pareek

Last Updated - 03/09/2024

Problem Statement

You are given a string composed of the characters '(' and ')'. Your objective is to determine the length of the longest substring that is a valid sequence of parentheses.

A valid parentheses substring is one where every opening parenthesis '(' is matched by a corresponding closing parenthesis ')', and they are properly nested.

Example 1

Input: s = "(()"

Output: 2

Example 2

Input: s = ")()())"

Output: 4

Example 3

Input: s = ""

Output: 0

Solution 1: Stack-Based Approach

function longestValidParentheses_Stack(s) {
    const stack = [-1];
    let maxLength = 0;

    for (let i = 0; i < s.length; i++) {
        if (s[i] === '(') {
            stack.push(i);
        } else {
            stack.pop();
            if (stack.length === 0) {
                stack.push(i);
            } else {
                maxLength = Math.max(maxLength, i - stack[stack.length - 1]);
            }
        }
    }

    return maxLength;
} 

const s1 = "(()";
longestValidParentheses_Stack(s1);  //output: 2 

const s2 = ")()())";
longestValidParentheses_Stack(s2);  //output: 4 

const s3 = "";
longestValidParentheses_Stack(s3);  //output: 0 

Solution 2: Dynamic Programming

function longestValidParentheses_DP(s) {
    const dp = new Array(s.length).fill(0);
    let maxLength = 0;

    for (let i = 1; i < s.length; i++) {
        if (s[i] === ')') {
            if (s[i - 1] === '(') {
                dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
            } else if (i - dp[i - 1] > 0 && s[i - dp[i - 1] - 1] === '(') {
                dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
            }
            maxLength = Math.max(maxLength, dp[i]);
        }
    }

    return maxLength;
} 

const s1 = "(()";
longestValidParentheses_DP(s1);  //output: 2 

const s2 = ")()())";
longestValidParentheses_DP(s2);  //output: 4 

const s3 = "";
longestValidParentheses_DP(s3);  //output: 0 

Solution 3: Two-Pass Approach

function longestValidParentheses_TwoPass(s) {
    let left = 0, right = 0, maxLength = 0;

    // Left to right
    for (let i = 0; i < s.length; i++) {
        if (s[i] === '(') left++;
        if (s[i] === ')') right++;
        if (left === right) maxLength = Math.max(maxLength, 2 * right);
        if (right > left) left = right = 0;
    }

    left = right = 0;
    // Right to left
    for (let i = s.length - 1; i >= 0; i--) {
        if (s[i] === '(') left++;
        if (s[i] === ')') right++;
        if (left === right) maxLength = Math.max(maxLength, 2 * left);
        if (left > right) left = right = 0;
    }

    return maxLength;
} 

const s1 = "(()";
longestValidParentheses_TwoPass(s1);  //output: 2 

const s2 = ")()())";
longestValidParentheses_TwoPass(s2);  //output: 4 

const s3 = "";
longestValidParentheses_TwoPass(s3);  //output: 0 

Solution 4: Greedy Approach

function longestValidParentheses_Greedy(s) {
    let maxLength = 0;
    let currentLength = 0;
    let stack = [-1]; // Base for valid substrings

    for (let i = 0; i < s.length; i++) {
        if (s[i] === '(') {
            stack.push(i);
        } else {
            stack.pop();
            if (stack.length === 0) {
                stack.push(i);
            } else {
                currentLength = i - stack[stack.length - 1];
                maxLength = Math.max(maxLength, currentLength);
            }
        }
    }

    return maxLength;
} 

const s1 = "(()";
longestValidParentheses_Greedy(s1);  //output: 2 

const s2 = ")()())";
longestValidParentheses_Greedy(s2);  //output: 4 

const s3 = "";
longestValidParentheses_Greedy(s3);  //output: 0 

Resources

Popular Solutions