Maximal Square

medium

By - Aman Pareek

Last Updated - 02/09/2024

Problem Statement

Imagine you have a grid made up of cells, where each cell can be either filled with '0' or '1'. Your goal is to find the largest square within this grid where every cell in the square is filled with '1's. Once you’ve found this largest square, you need to return the area of this square.

Example 1

Input: array = [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ]

Output: 4

Example 2

Input: array = [["0","1"],["1","0"]]

Output: 1

Example 3

Input: array = [["0"]]

Output: 0

Solution 1: Maximal square using dynamic programming

function maximalSquareUsingDynamicProgramming(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    let maxSide = 0;

    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (matrix[i - 1][j - 1] === '1') {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1;
                maxSide = Math.max(maxSide, dp[i][j]);
            }
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareUsingDynamicProgramming(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareUsingDynamicProgramming(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareUsingDynamicProgramming(array3);  //output: 0 

Solution 2: Maximal sqaure using optimized space

function maximalSquareOptimizedSpace(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const dp = Array(n).fill(0);
    let maxSide = 0;
    let prev = 0;

    for (let i = 0; i < m; i++) {
        let temp = 0;
        for (let j = 0; j < n; j++) {
            temp = dp[j];
            if (matrix[i][j] === '1') {
                dp[j] = Math.min(prev, Math.min(dp[j], (j > 0 ? dp[j - 1] : 0))) + 1;
                maxSide = Math.max(maxSide, dp[j]);
            } else {
                dp[j] = 0;
            }
            prev = temp;
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareOptimizedSpace(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareOptimizedSpace(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareOptimizedSpace(array3);  //output: 0 

Solution 3: Brute force search

function maximalSquareBruteForceSearch(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    let maxSide = 0;

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (matrix[i][j] === '1') {
                let sideLength = 1;
                while (i + sideLength < m && j + sideLength < n) {
                    let allOnes = true;
                    for (let x = i; x <= i + sideLength; x++) {
                        if (matrix[x][j + sideLength] === '0') {
                            allOnes = false;
                            break;
                        }
                    }
                    for (let y = j; y <= j + sideLength; y++) {
                        if (matrix[i + sideLength][y] === '0') {
                            allOnes = false;
                            break;
                        }
                    }
                    if (allOnes) {
                        sideLength++;
                    } else {
                        break;
                    }
                }
                maxSide = Math.max(maxSide, sideLength);
            }
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareBruteForceSearch(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareBruteForceSearch(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareBruteForceSearch(array3);  //output: 0 

Solution 4: Maximal square using prefix sum

function maximalSquareUsingPrefixSum(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    
    // Create a prefix sum matrix
    const prefixSum = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    let maxSide = 0;

    // Compute prefix sums
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            prefixSum[i][j] = parseInt(matrix[i - 1][j - 1]) 
                + prefixSum[i - 1][j] 
                + prefixSum[i][j - 1] 
                - prefixSum[i - 1][j - 1];
        }
    }

    // Function to get sum of submatrix
    function getSum(x1, y1, x2, y2) {
        return prefixSum[x2 + 1][y2 + 1]
            - prefixSum[x1][y2 + 1]
            - prefixSum[x2 + 1][y1]
            + prefixSum[x1][y1];
    }

    // Check for each possible square size
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            let sideLength = 1;
            while (i + sideLength <= m && j + sideLength <= n) {
                if (getSum(i, j, i + sideLength - 1, j + sideLength - 1) === sideLength * sideLength) {
                    sideLength++;
                } else {
                    break;
                }
            }
            maxSide = Math.max(maxSide, sideLength - 1);
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareUsingPrefixSum(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareUsingPrefixSum(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareUsingPrefixSum(array3);  //output: 0 

Solution 5: Stack Based solution for maximal square

function maximalSquareStackBased(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const heights = Array(n).fill(0);
    let maxSide = 0;

    for (let i = 0; i < m; i++) {
        const stack = [];
        for (let j = 0; j < n; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
            while (stack.length && heights[j] < heights[stack[stack.length - 1]]) {
                const h = heights[stack.pop()];
                const w = stack.length ? j - stack[stack.length - 1] - 1 : j;
                maxSide = Math.max(maxSide, Math.min(h, w));
            }
            stack.push(j);
        }
        while (stack.length) {
            const h = heights[stack.pop()];
            const w = stack.length ? n - stack[stack.length - 1] - 1 : n;
            maxSide = Math.max(maxSide, Math.min(h, w));
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareStackBased(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareStackBased(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareStackBased(array3);  //output: 0 

Solution 6: Recursive approach for maximal square

function maximalSquareRecursiveApproach(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    let maxSide = 0;

    function getMaxSquareSide(i, j) {
        if (i >= m || j >= n || matrix[i][j] === '0') return 0;
        let side = 1;
        while (i + side < m && j + side < n) {
            for (let x = j; x <= j + side; x++) {
                if (matrix[i + side][x] === '0') return side;
            }
            for (let y = i; y <= i + side; y++) {
                if (matrix[y][j + side] === '0') return side;
            }
            side++;
        }
        return side;
    }

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (matrix[i][j] === '1') {
                maxSide = Math.max(maxSide, getMaxSquareSide(i, j));
            }
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareRecursiveApproach(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareRecursiveApproach(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareRecursiveApproach(array3);  //output: 0 

Solution 7: Column height method

function maximalSquareColumnHeightMethod(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    let maxSide = 0;

    const dp = Array(n).fill(0);

    for (let i = 0; i < m; i++) {
        let prev = 0, temp;
        for (let j = 0; j < n; j++) {
            temp = dp[j];
            if (matrix[i][j] === '1') {
                dp[j] = Math.min(prev, Math.min(dp[j], (j > 0 ? dp[j - 1] : 0))) + 1;
                maxSide = Math.max(maxSide, dp[j]);
            } else {
                dp[j] = 0;
            }
            prev = temp;
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareColumnHeightMethod(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareColumnHeightMethod(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareColumnHeightMethod(array3);  //output: 0 

Solution 8: Row height method

function maximalSquareRowHeightMethod(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    let maxSide = 0;

    const dp = Array(m).fill(0).map(() => Array(n).fill(0));

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (matrix[i][j] === '1') {
                if (i === 0 || j === 0) {
                    dp[i][j] = 1;
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
                }
                maxSide = Math.max(maxSide, dp[i][j]);
            }
        }
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareRowHeightMethod(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareRowHeightMethod(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareRowHeightMethod(array3);  //output: 0 

Solution 9: Using histogram

function maximalSquareUsingHistogram(matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    let maxSide = 0;

    // Initialize an array to store the heights of histograms
    const heights = Array(n).fill(0);

    // Helper function to find the largest square in a histogram
    function largestSquareInHistogram(heights) {
        const stack = [];
        let maxSide = 0;
        for (let i = 0; i <= heights.length; i++) {
            const h = i === heights.length ? 0 : heights[i];
            while (stack.length && h < heights[stack[stack.length - 1]]) {
                const height = heights[stack.pop()];
                const width = stack.length ? i - stack[stack.length - 1] - 1 : i;
                maxSide = Math.max(maxSide, Math.min(height, width));
            }
            stack.push(i);
        }
        return maxSide;
    }

    // Iterate over each row in the matrix
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            // Update the height of histogram bar
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }
        // Calculate the largest square that can be formed in the histogram
        maxSide = Math.max(maxSide, largestSquareInHistogram(heights));
    }

    return maxSide * maxSide;
} 

const array1 = [
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
];
maximalSquareUsingHistogram(array1);  //output: 4 

const array2 = [["0","1"],["1","0"]];
maximalSquareUsingHistogram(array2);  //output: 1 

const array3 = [["0"]];
maximalSquareUsingHistogram(array3);  //output: 0 

Popular Solutions