Maximal rectangle

hard

By - Aman Pareek

Last Updated - 02/09/2024

Problem Statement

You are given a binary matrix (a grid) where each cell contains either '0' or '1'. Your task is to find the largest rectangle that contains only '1's in this grid and return its area.

Example 1

Input: array = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]

Output: 6

Example 2

Input: array = [["0"]]

Output: 0

Example 3

Input: array = [["1"]]

Output: 1

Solution 1: Histogram-Based Dynamic Programming

function maximalRectangleHistogram(matrix) {
    if (matrix.length === 0 || matrix[0].length === 0) return 0;
    
    const rows = matrix.length;
    const cols = matrix[0].length;
    const heights = Array(cols).fill(0);
    let maxArea = 0;

    for (let i = 0; i < rows; i++) {
        for (let j = 0; j < cols; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }
        maxArea = Math.max(maxArea, computeLargestRectangleArea(heights));
    }

    return maxArea;
}

function computeLargestRectangleArea(heights) {
    const stack = [];
    let maxArea = 0;
    let index = 0;

    while (index < heights.length) {
        if (stack.length === 0 || heights[stack[stack.length - 1]] <= heights[index]) {
            stack.push(index++);
        } else {
            const topOfStack = stack.pop();
            const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
            maxArea = Math.max(maxArea, area);
        }
    }

    while (stack.length > 0) {
        const topOfStack = stack.pop();
        const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
        maxArea = Math.max(maxArea, area);
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleHistogram(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleHistogram(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleHistogram(array3);  //output: 1 

Solution 2: Brute Force Rectangle Search

function maximalRectangleBruteForce(matrix) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    let maxArea = 0;

    for (let r1 = 0; r1 < rows; r1++) {
        for (let c1 = 0; c1 < cols; c1++) {
            if (matrix[r1][c1] === '1') {
                for (let r2 = r1; r2 < rows; r2++) {
                    for (let c2 = c1; c2 < cols; c2++) {
                        if (matrix[r2][c2] === '1') {
                            let valid = true;
                            for (let r = r1; r <= r2; r++) {
                                for (let c = c1; c <= c2; c++) {
                                    if (matrix[r][c] !== '1') {
                                        valid = false;
                                        break;
                                    }
                                }
                                if (!valid) break;
                            }
                            if (valid) {
                                maxArea = Math.max(maxArea, (r2 - r1 + 1) * (c2 - c1 + 1));
                            }
                        }
                    }
                }
            }
        }
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleBruteForce(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleBruteForce(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleBruteForce(array3);  //output: 1 

Solution 3: Prefix Sum Matrix Approach

function maximalRectanglePrefixSum(matrix) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    const prefixSum = Array.from({ length: rows + 1 }, () => Array(cols + 1).fill(0));
    let maxArea = 0;

    for (let i = 1; i <= rows; i++) {
        for (let j = 1; j <= cols; j++) {
            prefixSum[i][j] = parseInt(matrix[i - 1][j - 1]) +
                prefixSum[i - 1][j] +
                prefixSum[i][j - 1] -
                prefixSum[i - 1][j - 1];
        }
    }

    for (let r1 = 1; r1 <= rows; r1++) {
        for (let c1 = 1; c1 <= cols; c1++) {
            for (let r2 = r1; r2 <= rows; r2++) {
                for (let c2 = c1; c2 <= cols; c2++) {
                    const area = (r2 - r1 + 1) * (c2 - c1 + 1);
                    const total = prefixSum[r2][c2] - prefixSum[r1 - 1][c2] -
                        prefixSum[r2][c1 - 1] + prefixSum[r1 - 1][c1 - 1];
                    if (total === area) {
                        maxArea = Math.max(maxArea, area);
                    }
                }
            }
        }
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectanglePrefixSum(array1);  //output: 6 

const array2 = [["0"]];
maximalRectanglePrefixSum(array2);  //output: 0 

const array3 = [["1"]];
maximalRectanglePrefixSum(array3);  //output: 1 

Solution 4: Dynamic Programming with 2D Array

function maximalRectangleDP2D(matrix) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    const dp = Array.from({ length: rows }, () => Array(cols).fill(0));
    let maxArea = 0;

    for (let i = 0; i < rows; i++) {
        for (let j = 0; j < cols; j++) {
            if (matrix[i][j] === '1') {
                dp[i][j] = (i === 0 ? 1 : dp[i - 1][j] + 1);
                let minHeight = dp[i][j];
                for (let k = j; k >= 0; k--) {
                    minHeight = Math.min(minHeight, dp[i][k]);
                    maxArea = Math.max(maxArea, minHeight * (j - k + 1));
                }
            }
        }
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleDP2D(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleDP2D(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleDP2D(array3);  //output: 1 

Solution 5: Stack-Based Histogram Calculation

function maximalRectangleStack(matrix) {
    if (matrix.length === 0 || matrix[0].length === 0) return 0;

    const rows = matrix.length;
    const cols = matrix[0].length;
    const heights = Array(cols).fill(0);
    let maxArea = 0;

    for (let i = 0; i < rows; i++) {
        // Update histogram heights for the current row
        for (let j = 0; j < cols; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }

        // Calculate the maximum rectangle area for the updated histogram heights
        maxArea = Math.max(maxArea, maxRectangleInHistogram(heights));
    }

    return maxArea;
}

function maxRectangleInHistogram(heights) {
    const stack = [];
    let maxArea = 0;
    let index = 0;

    while (index < heights.length) {
        if (stack.length === 0 || heights[index] >= heights[stack[stack.length - 1]]) {
            stack.push(index++);
        } else {
            const topOfStack = stack.pop();
            const height = heights[topOfStack];
            const width = stack.length === 0 ? index : index - stack[stack.length - 1] - 1;
            maxArea = Math.max(maxArea, height * width);
        }
    }

    while (stack.length > 0) {
        const topOfStack = stack.pop();
        const height = heights[topOfStack];
        const width = stack.length === 0 ? index : index - stack[stack.length - 1] - 1;
        maxArea = Math.max(maxArea, height * width);
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleStack(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleStack(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleStack(array3);  //output: 1 

Solution 6: Binary Search Approach

function maximalRectangleBinarySearch(matrix) {
    if (matrix.length === 0 || matrix[0].length === 0) return 0;

    const rows = matrix.length;
    const cols = matrix[0].length;

    // Binary search on area
    let left = 0;
    let right = rows * cols;
    let maxArea = 0;

    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        if (canFormRectangle(matrix, mid)) {
            maxArea = mid;
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }

    return maxArea;
}

function canFormRectangle(matrix, area) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    const minHeight = Math.ceil(area / cols);

    // Construct height matrix
    const heights = Array.from({ length: rows }, () => Array(cols).fill(0));

    for (let i = 0; i < cols; i++) {
        heights[0][i] = matrix[0][i] === '1' ? 1 : 0;
        for (let r = 1; r < rows; r++) {
            heights[r][i] = matrix[r][i] === '1' ? heights[r - 1][i] + 1 : 0;
        }
    }

    // Check if there's a rectangle with at least the given area
    for (let r = 0; r < rows; r++) {
        for (let c = 0; c < cols; c++) {
            if (heights[r][c] >= minHeight) {
                let width = 0;
                for (let k = c; k >= 0; k--) {
                    if (heights[r][k] < minHeight) break;
                    width++;
                    if (width * minHeight >= area) return true;
                }
            }
        }
    }

    return false;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleBinarySearch(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleBinarySearch(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleBinarySearch(array3);  //output: 1 

Solution 7: Dynamic Programming with Row and Column Processing

function maximalRectangleDP(matrix) {
    if (matrix.length === 0 || matrix[0].length === 0) return 0;

    const rows = matrix.length;
    const cols = matrix[0].length;
    const dp = Array.from({ length: rows }).map(() => Array(cols).fill(0));
    let maxArea = 0;

    // Calculate dp table
    for (let i = 0; i < rows; i++) {
        for (let j = 0; j < cols; j++) {
            if (matrix[i][j] === '1') {
                dp[i][j] = (j === 0 ? 1 : dp[i][j - 1] + 1);
            } else {
                dp[i][j] = 0;
            }
        }
    }

    // Compute the maximum rectangle area
    for (let j = 0; j < cols; j++) {
        let stack = [];
        for (let i = 0; i < rows; i++) {
            while (stack.length > 0 && dp[i][j] < dp[stack[stack.length - 1]][j]) {
                const height = dp[stack.pop()][j];
                const width = stack.length === 0 ? i : i - stack[stack.length - 1] - 1;
                maxArea = Math.max(maxArea, height * width);
            }
            stack.push(i);
        }
        while (stack.length > 0) {
            const height = dp[stack.pop()][j];
            const width = stack.length === 0 ? rows : rows - stack[stack.length - 1] - 1;
            maxArea = Math.max(maxArea, height * width);
        }
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleDP(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleDP(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleDP(array3);  //output: 1 

Solution 8: Row-wise Prefix Sum and Rectangle Calculation

function maximalRectangleRowPrefix(matrix) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    let maxArea = 0;
    const heights = Array(cols).fill(0);

    for (let i = 0; i < rows; i++) {
        for (let j = 0; j < cols; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }
        maxArea = Math.max(maxArea, computeAreaInHistogram(heights));
    }

    return maxArea;
}

function computeAreaInHistogram(heights) {
    const stack = [];
    let maxArea = 0;
    let index = 0;

    while (index < heights.length) {
        if (stack.length === 0 || heights[stack[stack.length - 1]] <= heights[index]) {
            stack.push(index++);
        } else {
            const topOfStack = stack.pop();
            const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
            maxArea = Math.max(maxArea, area);
        }
    }

    while (stack.length > 0) {
        const topOfStack = stack.pop();
        const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
        maxArea = Math.max(maxArea, area);
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleRowPrefix(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleRowPrefix(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleRowPrefix(array3);  //output: 1 

Solution 9: Bottom-Up Dynamic Programming

function maximalRectangleBottomUpApproach(matrix) {
    if (matrix.length === 0 || matrix[0].length === 0) return 0;

    const rows = matrix.length;
    const cols = matrix[0].length;
    const heights = Array(cols).fill(0);
    let maxArea = 0;

    for (let i = 0; i < rows; i++) {
        // Update histogram heights
        for (let j = 0; j < cols; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }

        // Calculate the maximal rectangle for the current histogram
        maxArea = Math.max(maxArea, largestRectangleArea(heights));
    }

    return maxArea;
}

function largestRectangleArea(heights) {
    const stack = [];
    let maxArea = 0;
    let index = 0;

    while (index < heights.length) {
        if (stack.length === 0 || heights[stack[stack.length - 1]] <= heights[index]) {
            stack.push(index++);
        } else {
            const topOfStack = stack.pop();
            const height = heights[topOfStack];
            const width = stack.length === 0 ? index : index - stack[stack.length - 1] - 1;
            maxArea = Math.max(maxArea, height * width);
        }
    }

    while (stack.length > 0) {
        const topOfStack = stack.pop();
        const height = heights[topOfStack];
        const width = stack.length === 0 ? index : index - stack[stack.length - 1] - 1;
        maxArea = Math.max(maxArea, height * width);
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleBottomUpApproach(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleBottomUpApproach(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleBottomUpApproach(array3);  //output: 1 

Solution 10: Matrix Transformation Approach

function maximalRectangleTransform(matrix) {
    const rows = matrix.length;
    const cols = matrix[0].length;
    let maxArea = 0;

    const heights = Array(cols).fill(0);

    for (let i = 0; i < rows; i++) {
        for (let j = 0; j < cols; j++) {
            heights[j] = matrix[i][j] === '1' ? heights[j] + 1 : 0;
        }
        maxArea = Math.max(maxArea, computeLargestRect(heights));
    }

    return maxArea;
}

function computeLargestRect(heights) {
    const stack = [];
    let maxArea = 0;
    let index = 0;

    while (index < heights.length) {
        if (stack.length === 0 || heights[stack[stack.length - 1]] <= heights[index]) {
            stack.push(index++);
        } else {
            const topOfStack = stack.pop();
            const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
            maxArea = Math.max(maxArea, area);
        }
    }

    while (stack.length > 0) {
        const topOfStack = stack.pop();
        const area = heights[topOfStack] * (stack.length === 0 ? index : index - stack[stack.length - 1] - 1);
        maxArea = Math.max(maxArea, area);
    }

    return maxArea;
} 

const array1 = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]];
maximalRectangleTransform(array1);  //output: 6 

const array2 = [["0"]];
maximalRectangleTransform(array2);  //output: 0 

const array3 = [["1"]];
maximalRectangleTransform(array3);  //output: 1 

Popular Solutions